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Abstract—An adaptive state-feedback control system is proposed for a class of linear time-
varying systems represented in the controller canonical form. The adaptation problem is re-
duced to the one of Taylor series-based first approximations of the ideal controller parameters.
The exponential convergence of identification and tracking errors of such an approximation to
an arbitrarily small and adjustable neighbourhood of the equilibrium point is ensured if the
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1. INTRODUCTION

Starting from the 1960s, the subject of adaptive control has been one of the central ones for
Laboratory No. 7 of V.A. Trapeznikov Institute of Control Sciences of RAS. Its founder, academi-
cian Yakov Zalmanovich Tsypkin, made a significant contribution to research on adaptation and
learning problems and proposed a unified approach to their solution based on stochastic approxi-
mation methods. Using it, in particular, the problems of identification and parameter estimation
were successfully solved. Subsequently, Boris Theodorovich Polyak proposed optimal and robust
pseudogradient adaptation algorithms and strictly analysed their convergence rate [1, 2]. These
studies have largely become the foundations of the adaptive control theory, which, having started
with linear systems with time-invariant parameters, is gradually being generalised to wider classes
of plants. One such class will be discussed in this study.

One of the subjects of adaptive control theory is the problem of the time-invariant reference
model tracking by a time-varying plant with zero steady-state error. Despite more than 65 years of
efforts, this problem still lacks a universal practical solution, which motivates researchers all over
the world to design new approaches and tools.

Conventional adaptive control algorithms are applicable to linear systems with quasi-time-
invariant parameters. When they are applied to control linear time-varying systems, an uncom-
pensated summand occurs in the derivative of the Lyapunov function, which is proportional to the
rate of the unknown parameters change. As a result, instead of the convergence of the tracking
error to zero, only its boundedness inside some ball with non-adjustable boundary is guaranteed.
In [4], based on the speed-gradient method, these results are generalised to the problem of a time-
varying reference model tracking by a nonlinear time-varying system. In [5, 6], various composite
adaptive laws are proposed, which are claimed to reduce the steady-state error value in case the
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APPROXIMATION-BASED APPROACH TO ADAPTIVE CONTROL 513

regressor persistent excitation condition is met. In [7], a congelation of variables method is pro-
posed, which allows one to damp the above-mentioned uncompensated summand with the help of
not always suitable for practice high-gain feedback, thus ensuring asymptotic convergence of the
tracking error to zero. The alternative approach [8] also provides asymptotic stability, but uses a
high gain in the adaptive law instead of the control one. Considering the method of majorizing
functions [9, 10], the high gain is also used in the adaptive law, but, in contrast to [8], only dis-
sipativity of the closed-loop system is guaranteed. In [11] an adaptive control system is proposed
that provides exponential convergence of the tracking error to zero for systems represented in the
controllable canonical form with time-varying parameters that are described by known exosystems
with unknown initial conditions. In [12] it is proposed to reduce the problem of adaptive control of
time-varying mechanical systems to the identification of the piecewise-constant parameters of the
polynomial obtained by local expansion of the system time-varying parameters into a Taylor series
of an arbitrary order. In [13, 14], based on the parametric identification methods, an approach
to adaptive-optimal output feedback control of time-varying linear systems is developed under the
assumption that the plant parameters are known time-varying functions of time.

The disadvantages of the described above and other known approaches to solve the time-varying
system adaptive control problems can be classified as follows:

1) application of high-gain in the control or adaptive law (sliding-mode control, high values of
the parameters, nonlinear damping signals, etc.) [7–10, 12];

2) the necessity to meet the parametric identifiability conditions [5, 6, 11, 13, 14];

3) the dimensionality of the identification/adaptation problem to be solved is enlarged by taking
into account the coefficients of the physical laws of the system parameters change or approxi-
mation polynomials [11–14].

A more complete state-of-the-art understanding of the time-varying systems adaptive control
problem can be obtained from the statement sections of the cited studies [4–15]. In this paper,
a new approximation-based adaptive control method, which exploits the parameter identification
theory, is proposed for time-varying systems.

The motivation is to investigate the applicability conditions of the recently proposed algo-
rithm [16] that identifies time-varying parameters of a linear regression equation to solve the
time-varying linear system control problem. According to [16], the problem of time-varying param-
eters identification is reduced to the one of estimation of their piecewise-constant approximation.
As follows from the theoretical conclusions of [16], unlike many existing methods of time-varying
parameters identification, the algorithm from [16] allows one to ensure convergence of the time-
varying parameters identification error to a region, which can be arbitrarily reduced by decreasing
the Taylor series expansion time interval in case the regressor is persistently exciting over a suffi-
ciently small period of excitation Ts. In this study, the approach is proposed to be used to control
a class of linear systems with time-varying parameters. To that end:

1) a non-adaptive control law is proposed for a time-varying system, which feedback and forward
parameters are calculated only via the first (piecewise-constant) approximation of the system
time-varying parameters;

2) in case the control law from 1) is applied, the convergence conditions of the tracking error to
an arbitrarily small neighbourhood of zero are obtained;

3) based on the results from [16], the law to estimate the parameters of the controller from 1) is
proposed, which allows one to ensure the convergence of the tracking error to an arbitrarily
small neighbourhood of zero in case the regressor is persistently exciting with a sufficiently
small period of excitation.

Considering the above-given literature review, the obtained approximation-based approach to
design adaptive control systems for time-varying plants is close to [12]. However, unlike in [12],
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firstly, the time-varying parameters are approximated only by the first summand of Taylor series,
which reduces the computational complexity and does not increase the dimensionality of the iden-
tification problem, and secondly, the step of the obtained estimates interpolation is not needed.
In comparison with other existing solutions [4–14], the proposed algorithm of adaptive control of
time-varying linear systems has the following advantages (+) and disadvantages (–):
(+) high gain and damping components are not used in both control and adaptive laws;
(+) the function of the time-varying parameters change is not required to be known;
(+) no a priori information about the system parameters is used;
(–) the repressor persistent excitation condition is required to be met to achieve even asymptotic

convergence of the tracking error to a neighbourhood of zero;
(–) the value of the steady-state tracking error can be reduced only if the period Ts of the regressor

persistent excitation is small enough;
(–) violation of the parametric identifiability condition (the regressor persistent excitation) may

result in instability of the closed-loop system.
In general, although the proposed solution does not overcome all the shortcomings of the existing

approaches, it expands the set of adaptive control methods for the time-varying systems, and
therefore, in the authors’ opinion, it is of interest.

Notation and Definitions

The following notation is adpoted: f (t) ∈R
n×m means a value of a function f :

[

t+0 , +∞
)

→

R
n×m at the time point t, where t+0 > 0 is an initial time instant; for a vector a∈R

n the notation ||a||
is the Euclidean norm; the minimum and maximum eigenvalues of a matrix A∈R

n×n are denoted
as λmin (A) and λmax (A), respectively. The abbreviation exp stands for the exponential stability.

The definitions of finite and persistent excitation are used to prove theorems and propositions.

Definition 1. A signal ω (t) ∈R
n is finitely exciting over a time range [t1, t2] ⊂

[

t+0 ,∞
)

if there

exists α > 0 such that the following inequality holds:

t2∫

t1

ω (τ)ωT (τ) dτ > αIn. (1.1)

Definition 2. A signal ω (t) ∈R
n is persistently exciting if for all t > t+0 > 0 there exist Ts > 0

and α > 0 such that the following inequality holds:

t+Ts∫

t

ω (τ)ωT (τ) dτ > αIn. (1.2)

Set of signals, for which condition (1.1) or (1.2) is met, we denote as FE or PE, respectively.
A signal ω (t) is persistently exciting if ω ∈PE, and it is finitely exciting if ω ∈FE.

The main result of the study utilises the Taylor formula with integral remainder. The conditions
of existence of such equation are defined in the following lemma [17].

Lemma 1. Let (t1, t2) be an open time interval, and f (t) ∈R be a p-times continuously dif-

ferentiable function of time t, then for any pair of time instants t and a from (t1, t2) it holds

that

f (t) = f (a) +
t− a

1!
f (1) (a) + . . .+

(t− a)p

p!
f (p) (a) +

t∫

a

(t− ζ)p

p!
f (p+1) (ζ) dζ. (1.3)
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2. PROBLEM STATEMENT

We consider continuous linear systems with time-varying parameters

ẋ (t) = A(t)x(t) +B(t)u(t) = A0x (t) + en

(

aT (t) x (t) + b (t)u (t)
)

= A0x (t) + enΦ
T (t)Θ (t) , x

(

t+0

)

= x0,
(2.1)

where

A (t) = A0 + ena
T (t) , B (t) = enb (t) ,

A0 =

[

0(n−1)×1 In−1

01×n

]

, en =

[

0(n−1)×1

1

]

,
ΦT (t) =

[

xT (t) u(t)
]

,

Θ(t) =
[

aT (t) b (t)
]T

,

x (t) ∈R
n is a state vector with unknown initial conditions x0, u (t) ∈R stands for a control

signal, A (t) ∈R
n×n denotes an unknown matrix of the system under consideration, B (t) ∈R

n,
Θ (t) ∈R

n+1 are unknown vectors, A0 ∈R
n×n stands for a Frobenius matrix, en ∈R

n is the nth
Euclidean basis vector. The pair (A (t) , B (t)) is completely controllable for all t > t+0 . The con-
trollability condition for the system (2.1) can be validated via application of, for example, a criterion
given in [18].

A salient feature of the class of systems (2.1) is the fact that control and uncertainty signals
are in the same equation. Such systems are called the ones with matched uncertainty, and they
are widely met in practice. For example, the Euler angles dynamics of a rigid body, assuming its
symmetry, is described by a second-order system with matched uncertainty. Another good example
of a control problem with matched uncertainties is the control of a manipulator state using the
Euler–Lagrange formalism.

The following assumption is adopted with respect to the unknown parameters Θ (t).

Assumption 1. The parameters Θ(t) and their first and second derivatives are continuous and

bounded

‖Θ(t)‖ 6 Θmax,
∥
∥
∥Θ̇ (t)

∥
∥
∥ 6 Θ̇max,

∥
∥
∥Θ̈ (t)

∥
∥
∥ 6 Θ̈max,

where the upper bounds Θmax, Θ̇max and Θ̈max exist, but they are unknown.

The required control quality for the closed-loop system that includes the system (2.1) and the
controller is defined with the help of the reference model with time-invariant parameters

ẋref (t) = A0xref (t)+en

(

brefr (t) + aTrefxref (t)
)

, xref

(

t+0

)

= x0ref , (2.2)

where xref (t)∈R
n is a reference model state vector with known initial conditions x0ref , r(t)∈R

denotes a reference signal, Aref = A0 + ena
T
ref ∈R

n×n stands for a Hurwitz reference model state
matrix, bref is a reference model high frequency gain.

We assume that the reference model (2.2) is chosen in such a way that the matching conditions
are met, i.e the state vector of (2.1) can ideally track the one of (2.2).

Assumption 2. There exist parameters kx (t) ∈R
1×n and kr (t) ∈R such that the following equa-

tions hold

aTref − aT (t) = b (t) kx (t) , bref = b (t) kr (t) .

This assumption is necessary and sufficient condition for the existence of a control signal u(t)
that ensures for all t > t+0 that the equations of the system (2.1) coincide with those of the chosen
reference model (2.2). The assumption is ensured to be satisfied by choosing a reference model
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in the form of (2.2), by consideration of a class of systems with a time-invariant sign of the high-
frequency gain b(t) and by a completely controllable pair (A (t) , B (t)). It should be noted that
Assumption 2 imposes the following constraint on the system (2.1): sgn (b (t)) = const,1 and hence
jointly Assumptions 1 and 2 require boundedness of bmax > |b (t)| > bmin > 0.

The aim is to design an adaptive control law u (t), which, if Φ∈PE, ensures exponential con-
vergence (exp) of the error eref (t) = x (t)− xref (t) into the goal set

lim
t→∞

‖eref (t)‖ 6 ∆eref (exp) , (2.3)

in such a way that there exists some parameter of the adaptive control procedure, from which value
the steady-state error ∆eref > 0 depends.

3. PRELIMINARY RESULTS AND TRANSFORMATIONS

An effective solution of the control problem of a linear system with unknown piecewise-constant
parameters has been obtained recently in [19]. In this section the problem of adaptive control of a
system (2.1) with time-varying parameters will be transformed into the one of control of a system
with the piecewise-constant parameters. To this end, first of all, we show that the stated goal (2.3)
is achievable with the help of the non-adaptive control law with known ideal parameters, which
uses only piecewise-constant approximations of the time-varying parameters of the system (2.1) in
its feedback and feedforward summands.

Taking into account Assumption 1, the error equation between the plant (2.1) and the reference
model (2.2) is written as

ėref (t) = Areferef (t) + enb (t) [u (t)− kx (t)x (t)− kr (t) r (t)]

= Areferef (t) + enb (t)
[

u (t)−KT (t)ω (t)
]

,
(3.1)

where

eref (t) = x (t)− xref (t) , ω (t) =
[

xT (t) rT (t)
]T

∈R
n+1,

K (t)=
[

kx (t) kr (t)
]T

∈R
(n+1)×1.

The disturbance KT (t)ω (t) is going to be represented as a sum of two terms: with the piecewise-
constant and time-varying parameters. To that end, a growing sequence is introduced

t+i = T

⌊

t− t+0
T

⌋

, i∈N,

where t+i+1 − t+i = T > 0, ⌊.⌋ : R → Z is a function to round down to the closest integer.

As, owing to Assumptions 1 and 2, the parameters K (t) are differentiable, then, following the
Taylor equation (1.3), it can be written for the neighbourhood T of the time instant t+i :

K (t) = K
(

t+i

)

+

t∫

t+
i

K̇ (ζ) dζ

︸ ︷︷ ︸

δK0(t)

, (3.2)

where K
(

t+i

)

= Ki are values of the parameters K (t) at the time instant t+i , ‖δK0 (t)‖ 6 K̇maxT is

the reminder of the zeroth order (p = 0, see (1.3)).

1 Otherwise there exists a time instant ta > t
+

0 at which b (ta) = 0, and equations from Assumption 2 have no
solution in the general case (bref 6= 0, aref − a (ta) 6= 0n).
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(a) (b)

Fig. 1. Graphical illustration of relationship between K(t), θ (t) and θ̂ (t).

Owing to (3.2), for each time range
[

t+i , t
+
i + T

)

the time-varying parameters K (t) can be ap-

proximated by their value Ki at the beginning of such time range. Then the sequence of such values
{K0,K1, . . . ,Ki} together with the sequence of the switching time instants {t+0 , t

+
1 , . . . , t

+
i } define

the piecewise-constant signal, which is the first approximation of the time-varying parameters K (t)
for all t > t+0 :

θ (t) = Ki = K0 +
i∑

q=1

∆θ
qh
(

t− t+q

)

, (3.3)

where ∆θ
q = Kq−Kq−1 is the amplitude of the parameters K (t) change over the time range

[

t+i , t
+
i+1

]

,

h : [t+0 , ∞) → {0, 1} stands for the Heaviside function.

For all t > t+0 , equation (3.3) allows one to write the time-varying parameters as a sum K (t) =
θ (t) + δK0 (t), which results in the required representation of the disturbance

ėref (t) = Areferef (t) + enb (t)
[

u (t)− θT (t)ω (t)− δTK0 (t)ω (t)
]

. (3.4)

Equation (3.4) motivates to introduce the following implementable continuous non-adaptive
control law

u (t) = θ̂T (t)ω (t) , (3.5a)

˙̂
θ (t) = −γ1

(

θ̂ (t)− θ (t)
)

= −γ1θ̃ (t) , θ̂
(

t+0

)

= θ̂0, (3.5b)

where θ̂ (t) stands for the result of the parameters θ(t) filtration, and γ1 > 0 denotes the filter
parameter.

Considering a particular case K(t) = sin (t) + 2 and T = 1, the relationship between the parame-
ters K(t), θ (t) and θ̂ (t) is explained in Figs. 1a and 1b. For the same example, Fig. 1b demonstrates
the approximation error δK0 (t) and its upper bound K̇maxT = 1.

The conditions, under which the stated goal is achieved by application of the law (3.5a) + (3.5b),
are presented in the following proposition.

Proposition 1. If the condition i 6 imax < ∞ is met, then there exists Tmin > 0 such that for all

0 < T < Tmin the control law (3.5) ensures that the stated goal (2.3) is achieved.

Proof of proposition is postponed to Appendix.

According to Proposition 1, in order to solve the stated problem (2.3), it is sufficient to use
piecewise-constant approximations θ(t) of the time-varying parameters of the disturbanceKT(t)ω(t)
to calculate the parameters of the control law (3.5a). Thus the adaptive control problem for a class
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of systems with unknown time-varying parameters (2.1) is reduced to the one of identification of
the unknown piecewise-constant parameters θ (t). To solve this problem, it is natural to be based
jointly on approaches previously developed in [16, 19].

Remark 1. The condition i 6 imax < ∞ is required for formal proof of proposition 1 and is not
restrictive for practical scenarios.

4. MAIN RESULT

Following the method of exponentially stable adaptive control of systems with piecewise-constant
parameters [19], for indirect implementation of (3.5), we first obtain a regression equation relating
the parameters θ (t) to the signals calculated on the basis of the measurable vector Φ (t). The result
of such a parameterisation can be formulated as a proposition.

Proposition 2. Using the state of the stable filter (l > 0) with resetting at some time instants t+i

Φ̇ (t) = −lΦ(t) + ΛT
(

t, t+i

)

Φ (t) , Φ
(

t+i

)

= 02(n+1),

Λ
(

t, t+i

)

=
[

In+1

(

t− t+i

)

In+1

]

∈R
(n+1)×2(n+1),

(4.1)

normalization procedure

zn (t) = ns (t) e
T
n [x (t)− lx (t)−A0x (t)] ,

ϕT
n (t) = ns (t)ϕ (t) = ns (t)

[

Φ
T
(t) e−l(t−t+

i )
]

,

ns (t) =
1

1 + ϕT (t)ϕ (t)
, x (t) =

[

In×n 0n×(n+2)

]

Φ (t) ,

(4.2)

extension (σ > 0)

ż (t) = e−σ(t−t+
i )ϕn (t) z

T
n (t) , z

(

t+i

)

= 02n+3, (4.3a)

ϕ̇ (t) = e−σ(t−t+
i )ϕn (t)ϕ

T
n (t) , ϕ

(

t+i

)

= 0(2n+3)×(2n+3), (4.3b)

mixing

Y (t) : = adj {ϕ (t)} z (t) , ∆(t) : = det {ϕ (t)} , (4.4)

elimination

za (t) = Y T (t)La, zb (t) = Y T (t)Lb,

La =
[

In×n 0n×(n+3)

]T
∈R

(2n+3)×n, Lb =
[

01×n 1 01×(n+2)

]T
∈R

(2n+3)×1,
(4.5)

substitution

Y (t) : =
[

∆(t) aTref − za (t) ∆ (t) bref
]T

, M (t) : = zb (t) , (4.6)

and smoothing (k > 0)

Υ̇ (t) = −k (Υ (t)− Y (t)) , Υ
(

t+0

)

= 0n+1, (4.7a)

Ω̇ (t) = −k (Ω (t)−M (t)) , Ω
(

t+0

)

= 0, (4.7b)

we have a perturbed regression equation

Υ(t) = Ω (t) θ (t) + w (t) , (4.8)

where the signals Υ(t) , Ω (t) are calculated via Φ (t) and additionally:
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a) if Φ∈PE ⇒ ϕn ∈PE with the period Ts < T , then there exists Tmin > 0 such that for all

0 < T < Tmin and t > t+0 +Ts it holds that

0 < ΩLB 6 Ω (t) 6 ΩUB.

b) if i 6 imax < ∞, then for all t > t+0 +Ts it holds that

‖w (t)‖ 6 w1maxe
−γ1(t−t+

0
−Ts) + w2max (T ) ,

lim
T→0

w2max (T ) = 0.

Proof of proposition and definition of w (t) are given in Appendix.

The parameterisation (4.1)–(4.8) uses the procedures proposed to solve the problem of adaptive
control of systems with piecewise-constant parameters [19]. The difference is that the time-varying

matrix Λ
(

t, t+i

)

is used in (4.1) and the states of the filters (4.1) and (4.3) are reset at known,

rather than algorithmically detectable, time instants.

Here we briefly explain the purpose of the procedures in use. Having the measurable signals Φ(t)
at hand, the application of the filter (4.1) allows one to obtain a regression equation with mea-

surable regressor and regressand with respect to parameters ϑ (t) =
[

Θi
T Θ̇T

i eTnx
(

t+i

)]T
, where

Θ
(

t+i

)

= Θi, Θ̇
(

t+i

)

= Θ̇i are the values of the system parameters Θ (t) and the rate of their

change at the time instant t+i . The normalisation (4.2) ensures that all signals used in further
procedures belong to L∞ space. The extension and mixing procedures (4.3), (4.4) allow one to
transform the vector regressor ϕn (t) ∈R

2n+3 into a scalar one ∆ (t) ∈R. Owing to ∆ (t) ∈R, the
elimination (4.5) separates the regression equation under consideration into two ones with respect
to the parameters of the piecewise-constant approximation of a (t) and b (t). By substitution (4.6)
of (4.5) into the matching conditions (see assumption 2), we transform the equations with respect
to approximation of the system parameters into the ones with respect to approximation θ (t) of the
perturbation parameters. Smoothing (4.7a), (4.7b) allows one to ensure sufficient smoothness of
the signals Υ (t) and Ω (t).

Having at hand the regression equation (4.8) that regressor and regressand are based only on
measurarble signals Φ (t), we can indirectly implement the law (3.5) and guarantee the achievement
of the goal (2.3).

Theorem 1. Let Φ∈PE ⇒ ϕn ∈PE with the period Ts < T , Assumptions 1–2 be met, then there

exists Tmin > 0 such that for all 0 < T < Tmin the control law (3.5a) with the adaptive law

˙̂
θ (t) = −γ (t)Ω (t)

(

Ω (t) θ̂ (t)−Υ(t)
)

= −γ (t)Ω2 (t) θ̃ (t) + γ (t)Ω (t)w (t) , θ̂
(

t+0

)

= θ̂0,

γ (t) =







0, if Ω (t) < ρ∈ (0, ΩLB] ,
γ1

Ω2 (t)
otherwise,

(4.9)

in case i 6 imax < ∞ for ξ (t) =
[

eTref (t) vecT
(

θ̃ (t)
)]T

, ensures that:

1) ∀t > t+0 ξ (t) ∈L∞,

2) lim
t→∞

‖ξ (t)‖ 6 ∆ξ (T ) (exp) , lim
T→0

∆ξ (T ) = 0.

Proof of theorem is presented in Appendix.
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Fig. 2. Block diagram of proposed adaptive control system.

The block diagram of the obtained algorithm for adaptive control of systems with time-varying
unknown parameters (2.1) is presented in Fig. 2.

Thus, the developed control system consists of a control law (3.5a), an adaptive law (4.9), a set
of procedures (4.1)–(4.7) to process the measurable signals. In contrast to existing adaptive control
methods [4–14], the proposed approach does not require any a priori information about the system
parameters a (t) and b (t), does not use high-gain in control or adaptive laws, guarantees global
exponential convergence of the error ξ (t) to the bounded neighbourhood of the equilibrium, which
can be adjusted by the parameter T .

Remark 2. The feature of the proposed solution is the relationship between the steady-state
error ∆ξ (T ), the length of the Taylor series expansion interval T and the period of the regressor
persistent excitation Ts. The problem is that the parameter T cannot be made smaller than
the value of the regressor excitation period Ts. However, for a fixed period Ts and a minimum
possible T < Tmin such that T − Ts > 0, the error ξ (t) may be bounded in an unacceptably large
neighbourhood of the equilibrium point ∆ξ (T ). Therefore, in order to reduce the steady-state
error, it is necessary, first of all, to ensure a persistent excitation of the regressor with a sufficiently
small period Ts, which in practice can be achieved by addition of a high-frequency or random test
signal to the reference r (t).

5. NUMERICAL EXPERIMENTS

In Matlab/Simulink numerical experiments have been conducted for the proposed adaptive
system using the explicit Euler solver with a constant step time of τs = 10−3 s.

The system (2.1) was considered with n = 2. The initial conditions, the parameters of the system
and reference model (2.2) were chosen as

x0 =
[

−1 1
]T

, b (t) = 3 + cos (0.4t) sin (0.1t) , aTref (t) =
[

−8 −4
]

,

aT (t) =
[

2 + sin (0.1t) 1 + 5
(

1− e
−1

25
t
)]

, bref = 8.
(5.1)

First, we verified the preliminary conclusions made in Proposition 1. We picked γ1 = 50 as the
filter constant (3.5b), and defined the reference as r (t) = 10. Figure 3 presents the comparison of
the error e1ref (t) for different T .

The obtained results validated the conclusions made in Proposition 1. Indeed, a decrease of T re-
sulted in a decrease of the steady-state value of the tracking error eref (t) when the control law (3.5a)
with (3.5b) was applied. Having checked proposition 1, we proceeded to verify the main result.
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Fig. 3. Behavior of |e1ref (t)| for different T .

Fig. 4. Behavior of regressors M(t) and Ω (t).

The parameters of the filters (4.1), (4.3), (4.7) and the adaptive law (4.9) were chosen as

l = 10, σ =
0.05

T
, k = 50, ρ = 10−72, γ1 = 100, T = 0.25,

the reference was picked as r (t) = 1 + rd (t) for rd (t) ∼ N
(
0, 10−2

)
. A random signal rd (t) was

added to a unity reference signal to ensure that ϕn ∈PE for the closed-loop system (3.1).

Figure 4 depicts the behavior of the regressors M(t) and Ω (t) on the logarithmic scale.

It follows from the obtained results that despite the fact that the filters (4.1) and (4.3) were
reset every T seconds, the regressor Ω (t) (unlike M(t)) was globally bounded away from zero
starting from some time instant, which confirms the theoretical conclusions made in statement (a)
of Proposition 2. Figure 4 demonstrates the importance of the smoothing procedure (4.7), which,
as can be seen, allows one to (i) average the values of the regressor M(t) over the period T , and
(ii) avoid discontinuities caused by the reinitialisation of the filters (4.1) and (4.3).

Figure 5 shows the behavior of (a) the state x (t) when the control law (3.5a) with (3.5b) and
with (4.9) is used, (b) the estimates of θ̂i (t) and the true parameters θi (t) + 1 shifted by one for
clarity of illustration, (c) the control signal (3.5a) with (4.9).

Figure 6 compares the values of the integral control quality index of tracking eref (t) and para-
metric θ̃ (t) errors for different values of T .

The simulation results illustrate the conclusions of Propositions 1, 2 and theorem. The goal (2.3)
is achieved, and the steady-state values of the errors eref (t) and θ̃ (t) are directly proportional to
the parameter T .
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Fig. 5. Behavior of (a)–(b) state x (t) when control law (3.5a) used with (3.5b) and with (4.9),
(c) estimates θ̂i (t) and ideal parameters θi (t) + 1 shifted by one for clarity of illustration,
(d) control signal (3.5a) with (4.9).

Fig. 6. Comparison of integral control quality indexes.

6. CONCLUSION

The problem of tracking of a linear time-invariant reference model by a linear time-varying
system is solved. It is proposed to approximate the unknown time-varying parameters of the
ideal control law by piecewise-constant parameters. Parametric identification methods proposed
in [16, 19] are combined to identify these piecewise-constant parameters. The resulting adaptive
control system requires persistent excitation of the regressor with a sufficiently small period to
achieve the control goal, but it does not require a priori information about the unknown parameters
of the system.
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APPENDIX

Proof of Proposition 1. The proof of the proposition is divided into two steps. At the first one
we analyse the properties of the parametric error θ̃ (t), at the second one — the properties of the
tracking error eref (t).

Step 1. Owing to proposition 1 from [19], if i 6 imax < ∞, then for the differential equation

˙̃
θ (t) = −γ1θ̃ (t)− θ̇ (t) , θ̃

(

t+0

)

= θ̂0 − θ
(

t+0

)

,

the following upper bound holds
∥
∥
∥θ̃ (t)

∥
∥
∥ 6 βmaxe

−γ1(t−t+
0 ), βmax > 0, (A.1)

where θ̇ (t) =
i∑

q=1
∆θ

qδ
(

t− t+q

)

, and δ : [t+0 ;∞) → {0,∞} is the Dirac function.

Step 2. The following quadratic form is introduced:

Veref = eTrefPeref+
a20
γ1

e−2γ1(t−t+
0 ), H = blockdiag

{

P ,
a20
γ1

}

,

λmin (H)
︸ ︷︷ ︸

λm

‖eref‖
2
6 V (‖eref‖) 6 λmax (H)

︸ ︷︷ ︸

λM

‖eref‖
2,

(A.2)

where eref (t) =
[

eTref (t) e−γ1(t−t+
0 )
]T

, P = PT > 0 is the solution of the below-given Lyapunov

equation in case λmin (Q) > 2:

AT
refP + PAref = −Q, Q = QT > 0.

The derivative of the quadratic form (A.2) is written as:

V̇eref = eTref

(

AT
refP + PAref

)

eref − 2a20e
−2γ1(t−t+

0 ) + 2eTrefPenbθ̃
Tω + 2eTrefPenbδ

T
θ0
ω

= −eTrefQeref − 2a20e
−2γ1(t−t+

0 ) + 2eTrefPenbθ̃
T
(

ωeref + ωr

)

+ 2eTrefPenbδ
T
θ0

(

ωeref + ωr

)

6 −λmin (Q) ‖eref‖
2 − 2a20e

−2γ1(t−t+
0 )

+ 2λmax (P ) bmax‖eref‖
2
∥
∥
∥θ̃
∥
∥
∥+ 2λmax (P )ωrbmax ‖eref‖

∥
∥
∥θ̃
∥
∥
∥

+ 2λmax (P ) bmaxK̇maxT‖eref‖
2 + 2λmax (P ) bmaxωrK̇maxT ‖eref‖ ,

(A.3)

where

‖ω (t)‖ 6

∥
∥
∥

[

eref (t) 0
]∥
∥
∥

︸ ︷︷ ︸
∥
∥ωeref

(t)
∥
∥=‖eref (t)‖

+
∥
∥
∥

[

xref (t) r (t)
]∥
∥
∥

︸ ︷︷ ︸

‖ωr(t)‖ 6 ωr

6 ‖eref (t)‖+ ωr.

Having applied Young’s inequality twice:

2λmax (P )ωrbmax ‖eref‖
∥
∥
∥θ̃
∥
∥
∥ 6 ‖eref‖

2 + λ2
max (P )ω2

rb
2
max

∥
∥
∥θ̃
∥
∥
∥

2
,

2λmax (P ) bmaxωrK̇maxT ‖eref‖ 6 λ2
max (P ) b2maxω

2
rK̇

2
maxT

2 + ‖eref‖
2,

(A.4)
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equation (A.3) is rewritten as:

V̇eref 6

[

−λmin (Q) + 2λmax (P ) bmax

(∥
∥
∥θ̃
∥
∥
∥+ K̇maxT

)

+ 2
]

‖eref‖
2

−2a20e
−2γ1(t−t+

0 ) + λ2
max (P )ω2

rb
2
max

∥
∥
∥θ̃
∥
∥
∥

2
+ λ2

max (P ) b2maxω
2
rK̇

2
maxT

2.
(A.5)

As the parametric error θ̃ (t) converges to zero exponentially (A.2), then, if λmin (Q) > 2, then
there definitely exists a time instant teref > t+0 and constants Tmin > 0, a0 > λmax (P )ωrbmaxβmax

such that for all t > teref and 0 < T < Tmin it holds that

−λmin (Q) + 2λmax (P ) bmax

(

βmaxe
−γ1
(
teref −t+

0

)

+ K̇maxT

)

+ 2 = −c1 < 0,

λ2
max (P )ω2

rb
2
maxβ

2
max − 2a20 = −c2 < 0.

(A.6)

Then the upper bound of the derivative (A.5) for all t > teref is written as

V̇eref 6 −ηerefVeref + λ2
max (P ) b2maxω

2
rK̇

2
maxT

2, (A.7)

where ηeref = min
{

c1
λmax(P ) ,

c2γ1
a2
0

}

.

The solution of the differential inequality (A.7) for all t > teref is obtained as

Veref (t) 6 e
−ηeref

(

t− teref

)

Veref

(

teref

)

+
λ2
max (P ) b2maxω

2
rK̇

2
maxT

2

ηeref
. (A.8)

Tending time to infinity for (A.8) and considering expression for Veref , it is concluded that (2.3)
holds, which completes the proof.

Proof of Proposition 2. Owing to assumption 2 and following (3.2)–(3.3), we apply the Taylor
formula (1.3) to the parameters Θ (t) to obtain:

Θ (t) = Θ
(

t+i

)

+

δ0(t)
︷ ︸︸ ︷

Θ̇
(

t+i

) (

t− t+i

)

+

t∫

ti

(t− ζ)Θ̈ (ζ) dζ

︸ ︷︷ ︸

δ1(t)

, (A.9)

where Θ
(

t+i

)

= Θi, Θ̇
(

t+i

)

= Θ̇i are the values of the system parameters Θ (t) and the rate of

their change at the time instant t+i , ‖δ1 (t)‖ 6 0.5Θ̈maxT
2 denotes the bounded reminder of the

first order (p = 1), ‖δ0 (t)‖ 6 Θ̇maxT is the bounded reminder of the zeroth order (p = 0).

Equation (A.9) is rewritten in the matrix form

Θ (t) = Λ
(

t, t+i

)

ϑ (t) + δ1 (t) , (A.10)

where ϑ (t) =
[

Θi
T Θ̇T

i

]T
∈R

2(n+1).

The substitution of (A.10) into (2.1) yields

ẋ (t) = A0x+ en

(

ΦT (t) Λ
(

t, t+i

)

ϑ (t) + ΦT (t) δ1 (t)
)

. (A.11)

The expression x (t)− lx (t) is differentiated to obtain

ẋ (t)− lẋ (t) = −l (x (t)− lx (t)) +A0x+ en

(

ΦT (t)Λ
(

t, t+i

)

ϑ (t) + ΦT (t) δ1 (t)
)

. (A.12)
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The solution of (A.12) is written as

x (t)− lx (t) = e−l(t−t+
i )x (ti) +A0x (t) +

t∫

t+
i

e−l(t−τ)enΦ
T (τ) Λ

(

τ, t+i

)

ϑ (τ) dτ

+

t∫

t+
i

e−l(t−τ)enΦ
T (τ) δ1 (τ) dτ = A0x (t) + enϕ (t)ϑ (t) + en

t∫

t+
i

e−l(t−τ)ΦT (τ) δ1 (τ) dτ

︸ ︷︷ ︸

ε0(t)

,
(A.13)

where ϑ (t) =
[

ϑT (t) eTnx
(

t+i

)]T
∈R

2n+3, and the third equality is not violated since the reset of

the filter states (4.1) and the change of parameters occur synchronously at a known time instant t+i ,

i.e. ϑ (t) = const for all t∈
[

t+i , t
+
i + T

)

.

Equation (A.13) is substituted into (4.2) to obtain

zn (t) = ns (t) e
T
n [x (t)− lx (t)−A0x (t)] = ϕT

n (t)ϑ (t) + ε0 (t) , (A.14)

where zn (t) ∈R, ϕn (t) ∈R
2n+3 and the perturbation ε0 (t) ∈R is bounded as follows (see defini-

tions of Φ (t) and ϕn (t)):

‖ε0 (t)‖ =

∥
∥
∥
∥
∥
ns (t)

t∫

t+
i

e−l(t−τ)ΦT (τ) δ1 (τ) dτ

∥
∥
∥
∥
∥
6

∥
∥
∥ϕT

n (t)
∥
∥
∥ 0.5Θ̈maxT

2. (A.15)

Owing to the multiplication of the regression equation (A.14) by ns (t), the regressor ϕT
n (t),

the regressand zn (t) and the perturbation ε0 (t) are bounded. In addition, according to the upper
bound (A.15), the perturbation ε0 (t) can be reduced by decreasing the parameter T . Therefore,
further on we will use the definition ε0 (t) : = ε0 (t, T ) and imply that any perturbation obtained
by transformation of ε0 (t, T ) can also be reduced by a reduction of T .

Having applied (4.3) and multiplicated z (t) by adj {ϕ (t)}, we have (commutativity of the filter
(4.3a) is not violated as its reinitialization and parameters change happen synchronously at a known
time instant t+i , i.e. ϑ (t) = const for all t∈ [t+i , t

+
i + T ))

Y (t) : = adj {ϕ (t)} z (t) = ∆ (t)ϑ (t) + ε1 (t, T ) ,

adj {ϕ (t)}ϕ (t) = det {ϕ (t)} I2(n+1)+1 = ∆(t) I2(n+1)+1,

ε1 (t, T ) = adj {ϕ (t)}

t∫

t+
i

e−σ(τ−t+
i )ϕn (τ) ε0 (τ , T ) dτ ,

(A.16)

where Y (t) ∈R
2n+3, ∆(t) ∈R, ε1 (t, T ) ∈R

2n+3.

Owing to ∆ (t) ∈R, the elimination (4.5) allows one to obtain the following from (A.16)

za (t) = Y T (t)La = ∆(t)ϑT
a (t) + εT1 (t, T )La,

zb (t) = Y T (t)Lb = ∆(t)ϑb (t) + εT1 (t, T )Lb,
(A.17)

where za (t) ∈R
1×n, zb (t) ∈R, and ϑa (t) , ϑb (t) are the first order approximations of the param-

eters a (t) and b (t), respectively (components of the vector Θi).
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In case Assumption 2 is met, following the definition of the signal K (t), the first order approxi-
mations θx (t) and θr (t) of the parameters kx (t) and kr (t), respectively, satisfy the equations

aTref − ϑT
a (t) = ϑb (t) θx (t) , bref = ϑb (t) θr (t) . (A.18)

where θ (t) =
[

θx (t) θr (t)
]T

.

Each equation from (A.18) is multiplied by ∆ (t). Equations (A.17) are substituted into the
obtained result to have equation (4.6):

Y (t) = M (t) θ (t) + d (t, T ) ,

Y (t) : =
[

∆(t) aTref − za (t) ∆ (t) bref
]T

,

M (t) : = zb (t) ,

d (t, T ) : = −
[

εT1 (t, T )La + εT1 (t, T )Lbθr (t) εT1 (t, T )Lbθr (t)
]T

,

(A.19)

where Y (t) ∈R
n+1, M (t) ∈R, d (t, T ) ∈R

n+1.

Owing to (A.19), the solution of (4.7a) is written as

Υ (t) =

t∫

t+
0

e

τ∫

t

kdτ

M (τ) θ (τ) dτ +

t∫

t+
0

e

τ∫

t

kdτ

d (τ, T ) dτ ± Ω (t) θ (t) = Ω (t) θ (t) + w (t) , (A.20)

where

w (t) = Υ (t)− Ω (t) θ (t) .

Equation (A.20) completes the proof of the fact that equation (4.8) can be obtained via procedure
(4.1)–(4.7).

In order to prove statement (a), the regressor Ω (t) is represented as:

Ω (t) = Ω1 (t) + Ω2 (t) ,

Ω̇1 (t) = −k (Ω1 (t)−∆(t)ϑb (t)) , Ω1

(

t+0

)

= 0,

Ω̇2 (t) = −k
(

Ω2 (t)− εT1 (t, T )Lb

)

, Ω2

(

t+0

)

= 0.

(A.21)

As k > 0 and the perturbation ε1 (t, T ) is bounded, then Ω2 (t) is bounded, moreover, for all
t > t+0 the following holds

|Ω2 (t)| 6 Ω2max (T ) , (A.22)

and there exists a limit limT→0Ω2max (T ) = 0 for the upper bound as, following (A.15)–(A.19), the
value of ε1 (t, T ) can be arbitrarily reduced by reduction of T .

The next aim is to analyze Ω1 (t). The solution of the first differential equation from (A.21) is

written for all t∈
[

t+i + Ts, t
+
i+1

)

as

Ω1 (t) = φ
(

t, t+i + Ts

)

Ω1

(

t+i + Ts

)

+

t∫

t+
i
+Ts

φ (t, τ )∆ (τ)ϑb (τ)dτ, (A.23)

where φ (t, τ) = e
−

t∫

τ

kdτ

.
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The upper bound is required for the signal Ω1 (t) over the time range under consideration. To
this end, we need bounds for ∆ (t), and, in its turn, the ones for ϕ (t).

As, according to the premises of the proposition, ϕn ∈PE for Ts < T , then ϕn ∈FE

over
[

t+i , t
+
i + Ts

]

(this fact can be validated by substitution of t = t+i into (1.2)). Then for all

t∈
[

t+i + Ts, t
+
i+1

)

the following lower bound holds for the regressor ϕ (t)

ϕ (t) =

t∫

t+
i

e−σ(τ−t+
i )ϕn (τ)ϕ

T
n (τ) dτ

>

t+
i
+Ts∫

t+
i

e−σ(τ−t+
i )ϕn (τ)ϕ

T
n (τ) dτ

> e−σ(t+i+1
−t+

i )

t+
i
+Ts∫

t+
i

ϕn (τ)ϕ
T
n (τ) dτ > αe−σ(t+i+1

−t+
i )In+1.

(A.24)

On the other hand, as ‖ϕn (t)‖
2
6 ϕmax

n , then there exists an upper bound

ϕ (t) 6 ϕmax
n

t∫

t+
i

e−σ(τ−t+
i )dτ 6 ϕmax

n

1− e−σ(t−t+
i )

σ
6 σ−1ϕmax

n , (A.25)

and, therefore, for all t∈
[

t+i + Ts, t
+
i+1

)

it holds that ∆UB > ∆(t) > ∆LB > 0.

Taking into consideration that, following Assumptions 1 and 2, bmax > |b (t)| > bmin > 0, and
ϑb (t) is the approximation of first order of b (t), then the following holds for the multiplication
∆ (t)ϑb (t)

∀t∈
[

t+i +Ts, t
+
i+1

)

∆UBbmax > |∆(t)ϑb (t)| > ∆LBbmin > 0. (A.26)

Having applied (A.21) and (A.26) and considered that 0 6 φ (t, τ) 6 1, the following estimates
hold for Ω1 (t)

∀t∈
[

t+0 , t
+
0 + Ts

]

Ω1 (t) ≡ 0,

∀i > 1 ∀t∈
[

t+i +Ts, t
+
i+1

]

Ω1

(

t+i +Ts

)

+
(

t+i+1 − t+i − Ts

)

∆UBbmax > Ω1 (t)

> φ
(

t+i+1, t
+
i +Ts

) (

Ω1

(

t+i +Ts

)

+
(

t+i+1 − t+i − Ts

)

∆LBbmin

)

> 0,

(A.27)

from which we have

∀t > t0+Ts Ω1max > Ω1 (t) > Ω1min > 0,

Ω1max = min
∀i>1

{

φ
(

t+i+1, t
+
i + Ts

) (

Ω1

(

t+i + Ts

)

+
(

t+i+1 − t+i − Ts

)

∆LBbmin

)}

,

Ω1min = max
∀i>1

{

Ω1

(

t+i + Ts

)

+
(

t+i+1 − t+i − Ts

)

∆UBbmax

}

.

(A.28)

Then, using (A.28) and (A.23), the bounds for the regressor Ω(t) are written

∀t > t0+Ts Ω1max +Ω2max (T ) > |Ω (t)| > Ω1min − Ω2max (T ) , (A.29)
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and, therefore, considering limT→0Ω2max (T ) = 0, there exists Tmin > 0 such that for all 0 < T <

Tmin and t > t0+Ts the following inequality holds

ΩUB > Ω (t) > ΩLB > 0, (A.30)

which was to be proved in statement (a).

In order to prove the statement (b), the disturbance w (t) is differentiated with (A.20) and (4.7)
at hand

ẇ (t) = Υ̇ (t)− Ω̇ (t) θ (t)− Ω (t) θ̇ (t)

= −k (Υ (t)− Y (t)) + k (Ω (t)−M (t)) θ (t)− Ω (t) θ̇ (t)

= −k (Υ (t)−M (t) θ (t)− d (t, T )) + k (Ω (t)−M (t)) θ (t)− Ω (t) θ̇ (t)

= −k (Υ (t)− Ω (t) θ (t))−Ω (t) θ̇ (t) + kd (t, T )

= −kw (t)− Ω (t) θ̇ (t) + kd (t, T ) , w
(

t+0

)

= 0n+1.

(A.31)

The solution of (A.31) is represented as:

w (t) = w1 (t) + w2 (t) ,

ẇ1 (t) = −kw1 (t)−Ω (t) θ̇ (t) , w1

(

t+0

)

= 0n+1,

ẇ2 (t) = −kw2 (t) + kd (t, T ) , w2

(

t+0

)

= 0n+1.

(A.32)

As for the first differential equation from (A.32), in Proposition 2 from [19] it is proved (up to
notation) that the following inequality holds

‖w1 (t)‖ 6 w1maxφ
(

t, t+0 + Ts

)

, (A.33)

when i 6 imax < ∞.

As k > 0 and the disturbance d (t, T ) is bounded, then w2 (t) is also bounded, and consequently,
the following inequality holds

‖w2 (t)‖ 6 w2max (T ) , (A.34)

where the limit limT→0w2max (T ) = 0 holds, as the input of the second differential equation
from (A.32) depends only from the value of d (t, T ), which, in its turn, according to (A.15)–(A.19),
can be reduced arbitrarily by reduction of T . The combination of the inequalities (A.33) and (A.34)
in accordance with (A.32) completes the proof of proposition.

Proof of Theorem 1. Proof of theorem is similar to the above-given proof of Proposition 1.

Step 1. For all t > t+0 + Ts the solution of the differential equation (4.9) is written as

θ̃ (t) = φ
(

t, t+0 + Ts

)

θ̃
(

t+0 + Ts

)

+

t∫

t+
0
+Ts

φ (t, τ)
γ1w (τ)

Ω (τ)
dτ

−

t∫

t+
0
+Ts

φ (t, τ)
i∑

q=1

∆θ
qδ
(

τ − t+q

)

dτ,

(A.35)

where φ (t, τ) = e
−

t∫

τ

γ1dτ

.
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Then, following the proof of Theorem 1 from [19], if i 6 imax < ∞, then the boundedness of the
parametric error (A.35) can be shown:

∥
∥
∥θ̃ (t)

∥
∥
∥ 6 βmaxe

−
γ1
2 (t−t+

0
−T0) +

γ1w1max

ΩLB

t∫

t+
0
+Ts

φ (t, τ)φ
(

τ, t+0 + Ts

)

dτ

+
γ1w2max (T )

ΩLB

t∫

t+
0
+Ts

φ (t, τ ) dτ 6

(

βmax +
2w1max

ΩLB

)

e−
γ1
2 (t−t+

0
−T0) +

γ1w2max (T )

ΩLB
.

(A.36)

Step 2. The following quadratic form is introduced for all t > t+0 + Ts:

Veref = eTrefPeref +
4a20
γ1

e−
γ1
2 (t−t+

0
−Ts), H = blockdiag

{

P ,
4a20
γ1

}

,

λmin (H)
︸ ︷︷ ︸

λm

‖eref‖
2
6 V (‖eref‖) 6 λmax (H)

︸ ︷︷ ︸

λM

‖eref‖
2,

eref (t) =
[

eTref (t) e−
γ1
4 (t−t+

0
−Ts)

]T
.

(A.37)

Similar to proof of Proposition 1, the derivative of (A.37) is written as

V̇eref 6

[

−λmin (Q) + 2λmax (P ) bmax

(∥
∥
∥θ̃
∥
∥
∥+ K̇maxT

)

+ 2
]

‖eref‖
2

+ λ2
max (P )ω2

rb
2
max

∥
∥
∥θ̃
∥
∥
∥

2
+ λ2

max (P ) b2maxω
2
rK̇

2
maxT

2 − 2a20e
−

γ1
2 (t−t+

0
−Ts).

(A.38)

As for all t > t+0 + Ts the parametric error θ̃ (t) meets the inequality (A.36), then, considering

∥
∥
∥θ̃ (t)

∥
∥
∥

2
6

(

βmax +
2w1max

ΩLB

)2

e−γ1(t−t+
0
−T0) +

(
γ1w2max (T )

ΩLB

)2

+ 2

(

βmax +
2w1max

ΩLB

)
γ1w2max (T )

ΩLB
e−

γ1
2 (t−t+

0
−T0)

6

(

βmax +
2w1max

ΩLB

)(

βmax +
2 (w1max + γ1w2max (T ))

ΩLB

)

e−
γ1
2 (t−t+

0
−T0) +

(
γ1w2max (T )

ΩLB

)2

= βmaxe
−

γ1
2 (t−t+

0
−T0) +

(
γ1w2max (T )

ΩLB

)2

the upper bound of (A.38) is written as follows:

V̇eref 6

[

−λmin (Q) + 2 + 2λmax (P ) bmax

×

((

βmax +
2w1max

ΩLB

)

e−
γ1
2 (t−t+

0
−Ts) +

γ1w2max (T )

ΩLB
+ K̇maxT

)]

‖eref‖
2

+ λ2
max (P )ω2

rb
2
maxβmaxe

−
γ1
2 (t−t+

0
−Ts) + λ2

max (P )ω2
rb

2
max

(
γ1w2max (T )

ΩLB

)2

+ λ2
max (P )ω2

rb
2
maxK̇

2
maxT

2 − 2a20e
−

γ1
2 (t−t+

0
−Ts).

(A.39)
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There definitely exists a time instant teref > t+0 +Ts and constants T → 0, a0 >λmax(P )ωrbmaxβ
1

2
max

such that for all t > teref it holds that

−λmin (Q) + 2 + 2λmax (P ) bmax

((

βmax +
2w1max

ΩLB

)

e
−

γ1
2

(
teref−t+

0
−Ts

)

+
γ1w2max (T )

ΩLB
+ K̇maxT

)

= −c1 < 0,

λ2
max (P )ω2

rb
2
maxβmax − 2a20 = −c2 < 0.

(A.40)

Then the upper bound for the derivative (A.39) for all t > teref is obtained as

V̇eref 6 −ηerefVeref + λ2
max (P )ω2

rb
2
max

(
γ1w2max (T )

ΩLB

)2

+ λ2
max (P )ω2

rb
2
maxK̇

2
maxT

2, (A.41)

where ηeref = min
{

c1
λmax(P ) ,

c2γ1
4a2

0

}

.

The solution of the differential inequality (A.41) for all t > teref is written as

Veref (t) 6 e
−ηeref

(
t−teref

)

Veref

(

teref

)

+
1

ηeref

(

λ2
max (P )ω2

rb
2
max

(
γ1w2max (T )

ΩLB

)2

+ λ2
max (P ) b2maxω

2
rK̇

2
maxT

2

)

,
(A.42)

which completes the proof of statement (ii) of theorem.

Step 3. Owing to (A.36) and (A.42), the error θ̃ (t) is bounded for all t > t+0 + Ts, and the
error eref (t) — for all t > teref . Then, to prove the statement (i), we need to show that θ̃ (t) is

bounded over
[

t+0 , t
+
0 + Ts

)

, and eref (t) is bounded over
[

t+0 , teref

)

.

In the conservative case, the inequality Ω (t) 6 ΩLB is satisfied over
[

t+0 , t
+
0 + Ts

)

, whence, owing

to ˙̃
θ (t) = 0n+1, if Assumption 1 is met, it follows that the parametric error θ̃ (t) = θ̂

(

t+0

)

− θ (t) is

bounded over
[

t+0 , t
+
0 + Ts

)

and, as a consequence, for all t > t+0 .

Considering the time range
[

t+0 , teref

)

and taking into account the notation from (A.3), (A.18),

the error equation (3.1) is written in the following form:

ėref (t) =
(

Aref + enb (t)
(

θ̂x (t)− kx (t)
))

eref (t) + enb (t)
(

θ̂T (t)−KT (t)
)

ωr (t) ,

which, as it has been proved that θ̃ (t) is bounded for all t > t+0 and Assumptions 1 and 2 are met,
allows one, using Theorem 3.2 from [20], to make the conclusion that 1) eref (t) is bounded over
[

t+0 , teref

)

, 2) ξ (t) ∈L∞ for all t > t+0 .
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